
Neurobiology of Disease

Topologically Convergent and Divergent Structural
Connectivity Patterns between Patients with Remitted
Geriatric Depression and Amnestic Mild Cognitive
Impairment

Feng Bai,1,2* Ni Shu,3* Yonggui Yuan,1 Yongmei Shi,1 Hui Yu,2 Di Wu,2 Jinhui Wang,3 Mingrui Xia,3 Yong He,3

and Zhijun Zhang1

1Department of Neurology, Affiliated ZhongDa Hospital of Southeast University, and Institute of Neuropsychiatry of Southeast University, and 2Medical
School of Southeast University, Nanjing 210009, China, and 3State Key Laboratory of Cognitive Neuroscience and Learning, Beijing Normal University,
Beijing 100875, China

Alzheimer’s disease (AD) can be conceptualized as a disconnection syndrome. Both remitted geriatric depression (RGD) and amnestic mild
cognitive impairment (aMCI) are associated with a high risk for developing AD. However, little is known about the similarities and differences in
the topological patterns of white matter (WM) structural networks between RGD and aMCI. In this study, diffusion tensor imaging and deter-
ministic tractography were used to map the human WM networks of 35 RGD patients, 38 aMCI patients, and 30 healthy subjects. Furthermore,
graph theoretical methods were applied to investigate the alterations in the global and regional properties of the WM network in these patients.
First, both the RGD and aMCI patients showed abnormal global topology in their WM networks (i.e., reduced network strength, reduced global
efficiency, and increased absolute path length) compared with the controls, and there were no significant differences in these global network
properties between the patient groups. Second, similar deficits of the regional and connectivity characteristics in the WM networks were
primarily found in the frontal brain regions of RGD and aMCI patients compared with the controls, while a different nodal efficiency of the
posterior cingulate cortex and several prefrontal brain regions were also observed between the patient groups. Together, our study provides
direct evidence for the association of a great majority of convergent and a minority of divergent connectivity of WM structural networks between
RGD and aMCI patients, which may lead to increasing attention in defining a population at risk of AD.

Introduction
Late-onset depression, a clinical syndrome associated with an
increased risk for developing Alzheimer’s disease (AD) (Blasko et
al., 2010), is complicated by cognitive impairments, including
marked or mild impairment in cognitive function (Butters et al.,
2004). Moreover, depressive symptoms and cognitive impair-
ments are thought to have interactive effects (Goveas et al., 2011;
Xie et al., 2011). However, whether these depressive symptoms
constitute a true risk factor or are a consequence of the cognitive
decline that leads to AD remains largely unclear.

In first-episode remitted geriatric depression (RGD) subjects,
alterations of structure and function have been shown in the
frontal-temporal-parietal regions, particularly in the frontal ar-
eas (Alexopoulos et al., 2008; Yuan et al., 2008a,b). Specifically,
approximately one-half of demonstrated brain �-amyloid accu-
mulation in the aforementioned cortical areas among RGD is in a
pattern characteristic of early AD (Butters et al., 2008). Such a
changing pattern was also observed in amnestic mild cognitive
impairment (aMCI) pathologic (Jagust et al., 2010) and neuro-
imaging (Pihlajamäki et al., 2009) studies. aMCI has a probability
of developing into AD with a prevalence of 10 –15% per year
(Petersen et al., 1999), and a combination of aMCI and depres-
sion has been thought to represent the superimposed AD neuro-
pathology (Butters et al., 2008). In particular, the predominance
of cognitive impairments in aMCI involves memory dysfunction
(Petersen et al., 1999), while RGD is particularly associated with
dysfunction in executive control (Morimoto et al., 2011). Thus,
we assume that there are commonalities and distinctions in the
neurophysiologic mechanisms in RGD and aMCI.

The biological hypothesis of AD as a disconnection syndrome
have been proposed, involving progressive biochemical and
structural changes, which begin at the cellular and synaptic level
and ultimately culminate in neuronal death and white matter
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(WM) degeneration (Delbeuck et al., 2003; He et al., 2009). Ad-
vances in the development and application of diffusion tensor
imaging (DTI) and graph theory methods allow for the investi-
gation of topological patterns of human WM networks in vivo
(Bullmore and Sporns, 2009; He and Evans, 2010; Stam, 2010;
Bullmore and Bassett, 2011; Sporns, 2011). In healthy popula-
tions, WM networks have been mapped using deterministic
(Hagmann et al., 2008; Gong et al., 2009a; Shu et al., 2009, 2011)
or probabilistic tractography methods (Iturria-Medina et al.,
2008; Gong et al., 2009b). These resultant networks exhibited
nontrivial topological properties such as small worldness and
network hubs. Moreover, this model has accelerated our under-
standing of aberrant structural connectivity in AD (Lo et al.,
2010). Although both RGD and aMCI could be risk factors for
developing AD at a later stage, no study has directly examined the
topological organization of WM networks between RGD and
aMCI.

Here, we used DTI tractography and graph theory approaches
to investigate changes in the topological organization of the WM
network in first-episode RGD and aMCI. We sought to deter-
mine whether WM networks would show (1) abnormal topolog-
ical organization in patients with RGD and aMCI, and (2)
similarities and differences in the patterns of deficits between the
two patient groups.

Materials and Methods
Subjects
The present study recruited 103 elderly individuals (all of whom were
Chinese Han and right-handed), including 35 RGD subjects (14 males
and 21 females), 38 aMCI subjects (25 males and 13 females), and 30
healthy controls (16 males and 14 females), through normal community
health screening, newspaper advertisement, and hospital outpatient ser-
vice. A written informed consent was obtained from all of the partici-
pants, and the study was approved by the Research Ethics Committee of
Affiliated ZhongDa Hospital, Southeast University. Some of these sub-
jects were previously enrolled in our independent studies (Bai et al.,
2009a; Yuan et al., 2010).

All first-episode RGD subjects (i.e., who were not depressed after the
remission of the depressive symptoms) were interviewed in a semistruc-
tured interview included in the Structured Clinical Interview for Diag-
nostic and Statistical Manual of Mental Disorders, Fourth Edition (DSM-IV)
Axis I Disorders (SCID-I), Clinician Version, and met the following
inclusion criteria: (1) all subjects had previously met DSM-IV criteria for
major depression disorder and had remitted for �6 months before en-
rollment, (2) these subjects had only one depressive episode with an age
of onset was �60 years, (3) Hamilton Depression Rating Scale (HDRS)
scores were �7 and Mini Mental State Exam score (MMSE) scores were
�24, (4) duration of illness was �5 years and the medication-free period
for all subjects was longer than 3 months before the assessment. Exclu-
sion criteria were as follows: (1) another major psychiatric illness, includ-
ing substance abuse or dependence; (2) primary neurological illness,
including dementia or stroke; (3) medical illness impairing cognitive
function; (4) history of electroconvulsive therapy; (5) T2-weighted MRI
of all subjects showing major WM changes, infarction, or other lesions
(two experienced radiologists executed the scans). The RGD subjects had
a mean age of illness onset at 64.86 (�4.36) years. The mean duration of
illness was 3.10 (�1.21) years. All patients had previously taken antide-
pressant medication: 25 patients, selective serotonin reuptake inhibitors,
and 10, serotonin-noradrenaline reuptake inhibitors.

All aMCI subjects met the diagnostic criteria proposed by Petersen et
al. (1999) and others (Winblad et al., 2004): including (1) subjective
memory impairment corroborated by subject and an informant; (2) ob-
jective memory performances documented by an Auditory Verbal Learn-
ing Test-delayed recall score that is �1.5 SD of age-adjusted and
education-adjusted norms (the cutoff was �4 correct responses on 12
items for �8 years of education); (3) normal general cognitive function-
ing evaluated by a MMSE of 24 or higher; (4) a Clinical Dementia Rating
of 0.5, with at least a 0.5 in the memory domain; (5) no or minimal
impairment in activities of daily living; (6) absence of dementia, or not
sufficient to meet the National Institute of Neurological and Communi-
cative Disorders and Stroke and the Alzheimer’s Disease and Related
Disorders Association criteria for AD. Exclusion criteria were as follows:
(1) a past history of known stroke (modified Hachinski score of �4),
alcoholism, head injury, Parkinson’s disease, epilepsy, major depression
(excluded by Self-Rating Depression Scale), or other neurological or psy-
chiatric illness (excluded by clinical assessment and case history); (2)

Table 1. Cortical and subcortical regions of interest defined in the study

Index Regions Abbreviation Index Regions Abbreviation

(1,2) Precental gyrus PreCG (47,48) Lingual gyrus LING
(3,4) Superior frontal gyrus, dorsolateral SFGdor (49,50) Superior occipital gyrus SOG
(5,6) Superior frontal gyrus, orbital part ORBsup (51,52) Middle occipital gyrus MOG
(7,8) Middle frontal gyrus MFG (53,54) Inferior occipital gyrus IOG
(9, 10) Middle frontal gyrus, orbital part ORBmid (55,56) Fusiform gyrus FFG
(11,12) Inferior frontal gyrus, opercular part IFGoperc (57,58) Postcentral gyrus PoCG
(13,14) Inferior frontal gyrus, triangular part IFGtriang (59,60) Superior parietal gyrus SPG
(15,16) Inferior frontal gyrus, orbital part ORBinf (61,62) Inferior parietal, but supramarginal and angular gyri IPL
(17,18) Rolandic operculum ROL (63,64) Supramarginal gyrus SMG
(19,20) Supplementary motor area SMA (65,66) Angular gyrus ANG
(21,22) Olfactory cortex OLF (67,68) Precuneus PCUN
(23,24) Superior frontal gyrus, medial SFGmed (69,70) Paracentral lobule PCL
(25,26) Superior frontal gyrus, medial orbital ORBsupmed (71,72) Caudate nucleus CAU
(27,28) Gyrus rectus REC (73,74) Lenticular nucleus, putamen PUT
(29,30) Insula INS (75,76) Lenticular nucleus, pallidium PAL
(31,32) Anterior cingulate and paracingulate gyri ACG (77,78) Thalamus THA
(33,34) Median cingulate and paracingulate gyri DCG (79,80) Heschl gyrus HES
(35,36) Posterior cingulate gyrus PCG (81,82) Superior temporal gyrus STG
(37,38) Hippocampus HIP (83,84) Temporal pole: superior temporal gyrus TPOsup
(39,40) Parahippocampal gyrus PHG (85,86) Middle temporal gyrus MTG
(41,42) Amygdala AMYG (87,88) Temporal pole: middle temporal gyrus TPOmid
(43,44) Calcarine fissure and surrounding cortex CAL (89,90) Inferior temporal gyrus ITG
(45,46) Cuneus CUN

Note: The regions are listed according to a prior template obtained from an AAL atlas.
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major medical illness (e.g., cancer, anemia, and thyroid dysfunction); (3)
severe visual or hearing loss; (4) T2-weighted MRI of all subjects showing
major WM changes, infarction, or other lesions (two experienced radi-
ologists executed the scans).

The control subjects were required to have a clinical dementia rating of
0, an MMSE score of �26, and a delayed recall score of �4 for those with
�8 years of education. These participants also met the aforementioned
exclusion criteria for RGD and aMCI.

MRI data acquisition
The subjects were scanned using a 1.5 tesla scanner (General Electric
Medical Systems) with a homogeneous birdcage head coil. Subjects lay
supine with the head snugly fixed by a belt and foam pads to minimize
head motion. Conventional axial fast relaxation fast spin echo sequence

T2-weighted anatomic MR images were ob-
tained to rule out major WM changes, cerebral
infarction, or other lesions: repetition time
(TR), 3500 ms; echo time (TE), 103 ms; flip an-
gle, 90°; acquisition matrix, 320 � 192; field of
view (FOV), 240 mm � 240 mm; thickness, 6.0
mm; gap, 0 mm; number of excitations (NEX), 2.
High-resolution T1-weighted axial images cover-
ing the whole brain were acquired using a 3D
spoiled gradient echo sequence as follow: TR, 9.9
ms; TE, 2.1 ms; flip angle, 15°; acquisition matrix,
256 � 192; FOV, 240 mm � 240 mm; thickness,
2.0 mm; gap, 0 mm. Diffusion-weighted imaging
was acquired with single-shot echo-planar imag-
ing sequence in alignment with the anterior–
posterior commissural plane. The diffusion
sensitizing gradients were applied along 25 non-
collinear directions (b � 1000 s/mm2), together
with an acquisition without diffusion weighting
(b � 0). Thirty contiguous axial slices were ac-
quired with a slice thickness of 4 mm and no gap.
The acquisition parameters were as follows: TR,
10,000 ms; TE, 81.2 ms; flip angle, 90°; acquisi-
tion matrix, 128 � 128; FOV, 240 � 240 mm;
NEX, 2.

Data preprocessing
The data preprocessing consisted of the following
steps: eddy current and motion artifact correc-
tion of the DTI data (FSL; http://www.fmrib.ox.
ac.uk/fsl), estimation of the diffusion tensor, cal-
culation of the fractional anisotropy (FA), and
diffusion tensor tractography. The eddy current
distortions and motion artifacts in the DTI data-
set were corrected for by applying an affine align-
ment of each diffusion-weighted image to the b�
0 image. After this process, the diffusion tensor
elements were estimated by solving the Stejskal
and Tanner equation, and then, the recon-
structed tensor matrix was diagonalized to obtain
three eigenvalues (�1, �2, �3) and eigenvectors.
The FA of each voxel was also calculated. Diffu-
sion tensor tractography was implemented using
DTI-Studio software (H. Jiang and S. Mori, The
Johns Hopkins University, Baltimore, MD) by
using the “fiber assignment by continuous track-
ing” method (Mori et al., 1999). All of the tracts in
the dataset were computed by seeding each voxel
with an FA that was �0.2. The tractography was
terminated if it turned an angle�45° or reached a
voxel with an FA of �0.2 (Mori et al., 1999). The
tractography was performed in each subject to
generate three-dimensional curves that charac-
terize neural fiber tract connectivity (Conturo et
al., 1999; Basser et al., 2000), and it was per-
formed using DTI-Studio. Tens of thousands of

streamlines were generated to etch out all of the major WM tracts. To test the
effects of the FA threshold of tractography on the results of the network
analyses, we also performed whole-brain WM tractography with an FA
threshold of 0.3 and constructed a WM network for each participant. Similar
results of the network analyses were obtained (data not shown).

Network construction
The WM connectivity was modeled as a network comprising a total of 90
nodes (Table 1, Fig. 1). In this study, we defined all of the network nodes
and edges using the following procedures.

Network node definition. The procedure used to define the nodes has
been previously described (Gong et al., 2009a; Shu et al., 2009, 2011) and
was performed in this study using SPM8 software (http://www.fil.ion.
ucl.ac.uk/spm/software/spm8). Briefly, individual T1-weighted images

Figure 1. A flow chart for the construction of the WM structural network by DTI. (1) The rigid coregistration from the T1-
weighted structural MRI (b) to the DTI native space (a) (DTI color-coded map; red: left to right; green: anterior to posterior; blue:
inferior to superior) for each subject. (2) The nonlinear registration from the resultant structural MRI to the ICBM152 T1 template
in the MNI space (c), resulting in a nonlinear transformation (T). (3) The application of the inverse transformation (T � 1) to the AAL
template in the MNI space (e), resulting in a subject-specific AAL mask in the DTI native space (f ). All of the registrations were
implemented in the SPM8 package. (4) The reconstruction of all of the WM fibers (d) in the whole brain using DTI deterministic
tractography in DTI-Studio. (5) The weighted networks of each subject were created by computing the fiber numbers (FN-
weighted) that connected each pair of brain regions. The matrices and 3D representations (lateral view) of the mean WM structural
networks of each group are shown in the bottom panel (g). The nodes and connections were mapped onto the cortical surfaces
using the in-house BrainNet viewer software (www.nitrc.org/projects/bnv/). For details, see Materials and Methods. HC, Healthy
controls.
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were coregistered to the b0 images in the DTI space. The transformed T1
images were then nonlinearly transformed into the ICBM152 T1 tem-
plate in the MNI space. The inverse transformations were used to warp
the automated anatomical labeling (AAL) atlas (Tzourio-Mazoyer et al.,
2002) from the MNI space to the DTI native space. Of note, discrete
labeling values were preserved using a nearest-neighbor interpolation
method. Using this procedure, we obtained 90 cortical and subcortical
regions (45 for each hemisphere) (Table 1), each representing a node of
the network (Fig. 1).

Network edge definition. To define the network edges of the 90 regions,
we selected a threshold value for the fiber bundles. Two regions were
considered structurally connected if at least three fibers (T � 3) with two
endpoints were located in these two regions (Shu et al., 2011). Such a
threshold selection reduced the risk of false-positive connections due to
noise or the limitations in the deterministic tractography and simultane-
ously ensured the size of the largest connected component (i.e., 90) that
was observed in the networks across all of the controls (Shu et al., 2011).
In this study, we also evaluated the effects of different thresholds on the
network analysis by setting threshold values of the number of fiber bun-
dles to range from 1 to 5. We found that the threshold procedure did not
significantly influence our results (see Results). If not indicated other-
wise, we reported our results mainly based on a value of T � 3. After
defining the network edges, the weighted network analyses were per-
formed. Specifically, we defined the fiber number (FN) of the connected

fibers between two regions as the weights of the network edges. As a
result, we constructed the FN-weighted WM network for each partici-
pant, which was represented by a symmetric 90 � 90 matrix (Fig. 1).

Network analysis
To characterize the topological organization of WM structural networks,
several graph measures were considered here, as follows: network
strength, global efficiency, local efficiency, shortest path length, cluster-
ing coefficient, and small worldness (Rubinov and Sporns, 2010). For a
recent review on the uses and interpretations of these network measures,
see Rubinov and Sporns (2010) and the following descriptions.

Network strength. For a network (graph) G with N nodes and K edges,
we calculated the strength of G as follows:

Sp�G� �
1

N�
i�G

S�i�,

where S(i) is the sum of the edge weights wij (wij are the FN values for the
weighted networks) linking to node i. The strength of a network is the
average of the strength across all of the nodes in the network. To control
for the effects of the different number of total fiber on the network
topological differences, the connectivity matrix of each subject was first
normalized by the network strength (the total number of interconnect-

Table 2. Demographic and neuropsychological data

Control (n � 30) aMCI (n � 38) RGD (n � 35) F value (X 2) p value

Age (years) 71.3 � 4.4 71.6 � 5.3 67.9 � 4.5 6.35 0.003*
Education (years) 14.5 � 2.8 13.5 � 3.2 14.1 � 1.9 1.29 0.28*
Gender (M/F) 16/14 25/13 14/21 4.87 0.088 #

MMSE 28.43 � 1.25 27.03 � 1.57 28.54 � 2.19 8.65 0.0003a,c

Auditory verbal memory test 7.83 � 1.53 3.61 � 1.53 5.94 � 3.10 31.68 �0.0001a,b,c

Auditory verbal memory test-delayed recall 7.70 � 1.71 2.61 � 1.26 6.29 � 2.47 68.84 �0.0001a,b,c

Rey–Osterrieth complex figure test 34.53 � 1.80 30.96 � 7.77 30.03 � 8.85 3.60 0.031a,b

Rey–Osterrieth complex figure test-delayed recall 16.15 � 6.63 10.37 � 6.80 14.81 � 8.26 6.06 0.0033a,c

Trail making test-A (seconds) 70.93 � 28.70 94.45 � 35.57 115.83 � 83.34 5.31 0.0065b

Trail making test-B (seconds) 133.50 � 40.00 190.61 � 81.78 218.49 � 155.91 5.34 0.0062a,b

Symbol digit modalities test 35.50 � 10.19 25.66 � 9.75 26.97 � 13.76 7.08 0.0013a,b

Digit span test 13.20 � 2.20 11.97 � 1.99 12.14 � 2.92 2.46 NS
Clock drawing test 9.07 � 1.05 8.34 � 1.32 8.31 � 2.19 2.23 NS
HDRS 0.89 � 1.03 — 1.26 � 1.09 — —

Values are represented as the mean � SD. For comparisons of demographics, *p values were obtained using one-way ANOVA tests; #p value for the gender distribution in the three groups was obtained using a �2 test. The comparisons of
neuorpsychological scores among the three groups (aMCI, RGD, and controls) were performed using a separate one-way ANOVA. Post hoc pairwise comparisons were then performed using t test. p � 0.05 was considered significant. NS, Not
significant.
aPost hoc paired comparisons showed significant group differences between control versus aMCI.
bPost hoc paired comparisons showed significant group differences between control versus RGD.
cPost hoc paired comparisons showed significant group differences between aMCI versus RGD.

Table 3. Comparisons of the global network measures among the control, aMCI, and RGD groups

Sp Eglob Eloc Lp Cp � � 	

Low-resolution network (L-AAL)
Control 579.6 (14.48) 0.60 (0.009) 0.94 (0.011) 1.67 (0.029) 0.36 (0.002) 1.17 (0.008) 4.00 (0.088) 3.43 (0.069)
aMCI 512.6 (13.20) 0.57 (0.008) 0.91 (0.010) 1.77 (0.026) 0.36 (0.002) 1.18 (0.007) 4.17 (0.080) 3.54 (0.062)
RGD 530.3 (13.95) 0.57 (0.008) 0.92 (0.010) 1.76 (0.028) 0.36 (0.002) 1.19 (0.008) 4.12 (0.084) 3.46 (0.066)
F value 6.18 3.93 2.63 3.97 1.22 2.80 1.13 0.77
p value 0.003a,b 0.023a,b NS 0.022a,b NS NS NS NS

High-resolution network (H-1024)
Control 91.25 (2.08) 0.34 (0.005) 0.79 (0.008) 2.92 (0.058) 0.32 (0.002) 1.35 (0.009) 23.72 (0.39) 17.60 (0.22)
aMCI 82.04 (1.89) 0.32 (0.005) 0.77 (0.007) 3.20 (0.053) 0.32 (0.002) 1.37 (0.008) 24.58 (0.36) 17.95 (0.20)
RGD 84.17 (2.00) 0.32 (0.005) 0.77 (0.008) 3.18 (0.056) 0.32 (0.002) 1.37 (0.009) 24.76 (0.38) 18.06 (0.21)
F value 5.80 8.32 3.44 7.62 1.34 1.95 2.07 1.25
p value 0.004a,b 0.0005a,b 0.036a,b 0.0008a,b NS NS NS NS

The FN-weighted WM networks for each participant were constructed using two parcellation methods (L-AAL and H-1024). The comparisons of the global network measures were performed among the three groups (aMCI, RGD, and controls)
using univariate ANCOVAs. Post hoc pairwise comparisons were then performed using t test. Values estimated the marginal means (SEs) of the global network measures after covarying out age, gender, and education effects. p � 0.05 was
considered significant. NS, Not significant.
aPost hoc paired comparisons showed significant group differences between control versus aMCI.
bPost hoc paired comparisons showed significant group differences between control versus RGD.
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ing fibers between regions) before the calculation of the following net-
work properties.

Small-world properties. Small-world network parameters (clustering
coefficient, Cp, and shortest path length, Lp) were originally proposed by
Watts and Strogatz (1998).

In this study, we investigated the small-world properties of the
weighted brain networks. The clustering coefficient of a node i, C(i),
which was defined as the likelihood of whether the neighborhoods were
connected with each other or not, was computed as follows:

C�i� �
2

ki�ki 
 1��j,k �w� ijw� jkw� ki�
1/3,

where ki is the degree of node i and w� is the weight, which is scaled by the
mean of all weights to control each participant’s cost at the same level.
The clustering coefficient is zero [C(i) � 0] if the nodes are isolated or
have just one connection (i.e., ki � 0 or ki � 1). The clustering coefficient,
Cp, of a network is the average of the clustering coefficient over all nodes
and indicates the extent of the local interconnectivity or cliquishness in a
network (Watts and Strogatz, 1998).

The path length between any pair of nodes (e.g., node i and node j) is
defined as the sum of the edge lengths along this path. For weighted
networks, the length of each edge was assigned by computing the recip-
rocal of the edge weight, 1/wij. The shortest path length, Lij, is defined as
the length of the path for node i and node j with the shortest length. The
shortest path length of a network was computed as follows:

Lp�G� �
1

N�N 
 1� �i	j�G
Lij,

where N is the number of nodes in the network. The Lp of a network
quantifies the ability for information to propagate in parallel.

To examine the small-world properties, the clustering coefficient,
Cp, and the shortest path length, Lp, of the brain networks were com-
pared with those of random networks. In this study, we generated 100
matched random networks, which had the same number of nodes,
edges, and degree distribution as the real networks (Maslov and Snep-
pen, 2002). Of note, we retained the weight of each edge during
the randomization procedure such that the weight distribution of the
network was preserved. Furthermore, we computed the normal-
ized shortest path length (�), � � Lp

real/Lp
rand, and the normalized clustering

coefficient (�), � � Cp
real/Cp

rand, where Lp
rand and Cp

rand are the mean
clustering coefficient and the mean shortest path length of 100

matched random networks, respectively. Importantly, two parame-
ters correct the differences in the edge number and degree distribu-
tion of the networks across individuals. A real network would be
considered small-world if � � 1 and � 
 1 (Watts and Strogatz, 1998).
Thus, a small-world network not only has a higher local interconnec-
tivity but also has an approximately equivalent shortest path length
compared with random networks. These two measurements can be
summarized into a simple quantitative metric, small-worldness, 	 �
�/�, which is typically �1 for small-world networks (Humphries et
al., 2005).

Network efficiency. The global efficiency of G measures the global effi-
ciency of the parallel information transfer in the network (Latora and
Marchiori, 2001), which can be computed as follows:

Eglob�G� �
1

N�N 
 1� �
i	j�G

1

Lij
,

where Lij is the shortest path length between node i and node j in G.
The local efficiency of G reveals how much the network is fault tolerant

and shows how efficient the communication is among the first neighbors
of the node i when it is removed. The local efficiency of a graph is defined
as follows:

E loc�G� �
1

N �
i�G

Eglob�Gi�,

where Gi denotes the subgraph composed of the nearest neighbors of
node i.

Regional nodal characteristics. To determine the nodal (regional) char-
acteristics of the WM networks, we computed the regional efficiency,
Enodal(i) (Achard and Bullmore, 2007), as follows:

Enodal�i� �
1

N 
 1 �
i	j�G

1

Lij
,

where Lij is the shortest path length between node i and node j in G.
Enodal(i) measures the average shortest path length between a given node
i and all of the other nodes in the network. The node i is a brain hub if
Enodal(i) is at least 1 SD greater than the average nodal efficiency of the
network [i.e., Enodal(i) � mean � SD].

Network connectivity characteristics. To further localize specific pairs of
brain regions in which the structural connectivity was altered in patients,
we used a network-based statistic (NBS) approach (Zalesky et al.,

Figure 2. Global measures of WM structural networks were quantified in the control, aMCI, and RGD patients. The threshold (horizontal axis) determined the minimum number of streamlines
that needed to interconnect a pair of nodes for a connection to be assumed. The data points are marked with an asterisk to indicate a significant difference ( p � 0.05) among the three groups. Note
that T � n (1, 2, 3, 4, 5) indicates at least n or more streamlines must be present for a link to be drawn. Significant group effects in the network strength, global efficiency, and absolute path length
were observed for most of the thresholds. Note that the FN-weighted WM network for each participant was constructed using the AAL template. HC, Healthy controls.
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2010b). Briefly, we identified regional pairs,
which show between-group differences in
structural connectivity, and used the NBS
method to localize connected networks that
show significant changes in both the aMCI
and RGD patients.

High-resolution brain network analysis
It has been previously shown that brain
graph metrics are dependent on the resolu-
tion of the network (i.e., network size) (van
den Heuvel et al., 2008; Wang et al., 2009;
Zalesky et al., 2010a). Recent studies have
suggested the use of higher-resolution net-
works, of up to 1000 smaller parcels, instead
of using a coarse parcellation scheme of 90
brain regions (Hagmann et al., 2008; van den
Heuvel et al., 2008). Therefore, we further
subdivided the AAL template into 1024 ROIs
with equal size [i.e., high-resolution (H-
1024)] (Zalesky et al., 2010a). Then, we per-
formed a high-resolution network analysis to
examine the topological alterations in aMCI
and RGD patients. Similar to the low-
resolution AAL (L-AAL) networks, the num-
ber of interconnecting fibers was defined as
the weight of the network edge, which results
in a symmetric 1024 � 1024 matrix for each
participant.

Statistical analysis
To test the group differences in age, years of edu-
cation, and neuropsychological scores, we ana-
lyzed the data with separate one-way ANOVAs.
Post hoc pairwise comparisons were then per-
formed using t tests. The gender data were an-
alyzed using a � 2 test.

To determine the group differences in global
network measures and regional nodal charac-
teristics, comparisons were performed among
the three groups using univariate ANCOVAs.
Post hoc pairwise comparisons were then per-
formed using a general linear model. The ef-
fects of age, gender, and years of education
were adjusted for all of these analyses. A value
of p � 0.05 was considered significant.

To determine the significance levels of altered connectivity net-
works in the NBS analysis, we first detected the significant nonzero
connections within each group by performing a nonparametric one-
tailed sign test. For each pair of brain regions, the sign test was per-
formed with the null hypothesis that there is no existing connection,
that is, “fiber bundle number � 0.” The Bonferroni method was then
used to correct for multiple comparisons (i.e., 90 � 89/2 � 4005 pairs
of regions) at p � 0.05. Next, the nonzero connections within either
the patient or control groups were detected and combined into a
connection mask. The NBS approach was then conducted within the
connection mask, where a primary threshold ( p � 0.05) was first
applied to a t statistic (two-sample one-tailed t tests). This t statistic
was computed for each link to define a set of suprathreshold links
among which any connected components and their size (number of
links) could then be determined. To estimate the significance for each
component, the null distribution of the connected component size
was empirically derived using a nonparametric permutation ap-
proach (10,000 permutations). For each permutation, all of the sub-
jects were randomly reallocated into two groups, and the t statistic
was computed independently for each link. Next, the threshold ( p �
0.05) was used to generate suprathreshold links among which the
maximal connected component size was recorded. Finally, for a con-
nected component of size M that was found in the right grouping of

controls and patients, the corrected p value was determined by calcu-
lating the proportion of the 10,000 permutations for which the max-
imal connected component was larger than M. Of note, the effects of
age, gender, and years of education were removed by a regression
analysis performed before the statistical analysis of connections. For a
detailed description, see the study by Zalesky et al. (2010b).

Results
Neuropsychological test results
The demographic data are shown in Table 2. Although the edu-
cation and gender distribution were not different between the
three groups (p � 0.05), one-way ANOVAs indicated that the
three groups were not matched for age (p � 0.05) (it should be
noted that the age effect was removed in all of the following
network analyses). The neuropsychological characterizations for
each group are presented in Table 2. The ANOVAs showed sig-
nificant group effects in most of the test scores. Specifically, aMCI
patients showed greater deficits in episodic memory (i.e., audi-
tory verbal memory test-delayed recall and Rey–Osterrieth com-
plex figure test-delayed recall) than RGD patients. In contrast, a
tendency toward a greater alteration in executive function was
observed in the RGD patients compared with the aMCI patients
(i.e., trail-making tests, A and B).

Figure 3. Three-dimensional representations of the hub distributions in the control, aMCI, and RGD groups. The hub nodes are
shown in red with node sizes that represent their nodal efficiency values. The regions were mapped onto the cortical surface at a
lateral view. The nodal regions were located according to their centroid stereotaxic coordinates. Note that the FN-weighted WM
network for each participant was constructed using the AAL template. HC, Healthy controls. For the abbreviations of the nodes, see
Table 1.
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Global topology of the WM structural networks
Both of the patients and control subjects showed a small-world
organization of the WM networks, as expressed by � � 1 and � 

1 (Table 3, Fig. 2). Among the three groups, ANCOVAs on the
global network properties showed significant group effects in
network strength, global efficiency, and absolute shortest path
length (Table 3). In addition, post hoc comparisons showed sig-
nificantly reduced strength, decreased global efficiency, and in-
creased absolute path length in both the RGD and aMCI patients
relative to the controls. However, no differences (all p � 0.5) were
found between the RGD and aMCI patients in these parameters
(Table 3).

Node-based analysis
Identification of network hubs
The hub nodes with a size of Enodal(i) on the cortical surfaces are
shown in Figure 4. For each group, we identified 14 hub regions,
including 10 association cortical regions and 4 primary cortical
regions (Fig. 3, Table 4). In particular, 13 of the hub regions were
the same for all of the groups, including the bilateral dorsal supe-
rior frontal gyrus (SFGdor), bilateral middle frontal gyrus
(MFG), bilateral precentral gyrus (PreCG), bilateral postcentral
gyrus (PoCG), bilateral superior frontal gyrus, medial (SFGmed),
left middle occipital gyrus (MOG), and bilateral middle temporal
gyrus (MTG). One hub region, the left superior occipital gyrus
(SOG), was identified as a hub in the control and aMCI groups,
but not in the RGD group. In addition, the left precuneus
(PCUN) was identified as a hub in the RGD group, but not in the
other two groups. Moreover, the hubs identified for all of the
groups were predominantly found in regions of the association
cortices. These results were approximately consistent with those
obtained from previous studies (He et al., 2007; Hagmann et al.,
2008; Iturria-Medina et al., 2008; Gong et al., 2009a; Shu et al.,
2009, 2011).

Between-group differences in regional efficiency
Following the discovery of a disrupted global network organiza-
tion, we further localized the regions with altered nodal efficiency
in the patients (Table 5, Fig. 4). Among the three groups, we
found that the regions with significant group effects were mainly
distributed in the frontal and parietal cortices, including seven
frontal regions [left SFGmed, bilateral SFGdor, bilateral MFG,
left triangular part of the inferior frontal gyrus (IFGtriang), left
anterior cingulate gyrus (ACG)] and four parietal regions [right
posterior cingulate gyrus (PCG), left PreCG, and bilateral angular
gyrus (ANG)]. Post hoc tests showed that most of these regions
(10 of 11) had a reduced efficiency in aMCI patients compared
with controls. In six of these regions, including the left SFGmed,
bilateral SFGdor, left MFG, left ACG, and left PreCG, reduced
efficiency was observed in the RGD patients compared with con-
trols. In particular, decreased regional efficiency of the frontal
structures (five regions) in the WM networks were common def-
icits between the RGD and aMCI. Only one region (i.e., right
PCG) showed significant group differences between the RGD and
aMCI patients, with a higher nodal efficiency observed in the

Table 4. Hub Regions of WM networks in the control, aMCI, and RGD groups

Region Class Ei/mean Ki

Control SFGdor.R Association 1.66 32.35
SFGdor.L Association 1.60 26.21
MFG.R Association 1.58 21.38
MFG.L Association 1.58 21.44
PreCG.R Primary 1.49 23.44
PreCG.L Primary 1.48 21.69
PoCG.L Primary 1.45 21.61
PoCG.R Primary 1.45 22.33
SFGmed.L Association 1.43 16.81
SFGmed.R Association 1.41 14.77
MOG.L Association 1.41 26.83
MTG.L Association 1.33 21.65
SOG.L Association 1.31 18.16
MTG.R Association 1.31 20.77

aMCI SFGdor.R Association 1.60 28.82
MFG.R Association 1.54 20.74
SFGdor.L Association 1.52 23.05
MFG.L Association 1.50 19.16
PreCG.R Primary 1.47 21.53
PreCG.L Primary 1.46 20.39
MOG.L Association 1.44 24.80
PoCG.L Primary 1.44 21.08
PoCG.R Primary 1.41 20.31
SFGmed.R Association 1.38 14.37
SFGmed.L Association 1.37 14.78
SOG.L Association 1.34 17.06
MTG.L Association 1.33 20.28
MTG.R Association 1.31 18.58

RGD SFGdor.R Association 1.65 32.74
MFG.R Association 1.58 22.01
SFGdor.L Association 1.54 25.04
MFG.L Association 1.52 20.23
PreCG.R Primary 1.50 23.35
SFGmed.R Association 1.45 16.36
PoCG.R Primary 1.44 22.13
PreCG.L Primary 1.43 20.74
MOG.L Association 1.43 25.33
PoCG.L Primary 1.41 21.12
SFGmed.L Association 1.35 15.06
MTG.L Association 1.35 22.30
MTG.R Association 1.34 20.58
PCUN.L Association 1.31 22.62

The FN-weighted WM network for each participant was constructed using an AAL template. The hub
regions were identified if Enodal(i) was at least 1 SD greater than the mean nodal efficiency of the network
�i.e., Enodal(i) � mean � SD. The hubs were then sorted by the mean normalized nodal efficiency (divided
by the mean of all nodes) in each group. The cortical regions were classified as primary, association, and
paralimbic.

Table 5. Brain regions with significant group effects in the nodal efficiency among
the control, aMCI, and RGD groups

Regions Category
F value ( p value)
of ANCOVA

T value ( p value) of post hoc test

Control versus
aMCI

Control versus
RGD

aMCI versus
RGD

SFGmed.L Frontal 6.18 (0.003) �2.04 (0.045) �3.27 (0.002) NS
SFGdor.L Frontal 5.26 (0.007) �2.77 (0.007) �2.78 (0.007) NS
MFG.L Frontal 4.85 (0.010) �2.77 (0.007) �2.39 (0.020) NS
ACG.L Paralimbic 4.26 (0.017) �2.21 (0.031) �2.82 (0.006) NS
SFGdor.R Frontal 3.42 (0.037) �2.48 (0.016) �2.08 (0.042) NS
ANG.L Parietal 3.38 (0.038) �2.55 (0.013) NS NS
IFGtriang.L Frontal 3.38 (0.038) �3.01 (0.004) NS NS
PCG.R Paralimbic 3.37 (0.039) NS NS 2.30 (0.025)
PreCG.L Frontal 3.36 (0.039) �2.17 (0.034) �2.29 (0.025) NS
MFG.R Frontal 3.33 (0.040) �2.64 (0.010) NS NS
ANG.R Parietal 3.18 (0.046) �2.27 (0.026) NS NS

The FN-weighted WM network for each participant was constructed using an AAL template. The comparisons of
nodal efficiency were performed among the three groups (aMCI, RGD, and controls) using univariate ANCOVAs. Post
hoc pairwise comparisons were then performed using t test. The age, gender, and education effects were removed
in all of these analyses. For ANCOVAs of the 90 brain regions, p � 0.05 (uncorrected) was considered significant. For
post hoc tests, p � 0.05 was considered significant. NS, Not significant. For T values, each negative column repre-
sents aMCI � control, RGD � control, and RGD � aMCI, respectively.
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RGD than the aMCI patients. However, this efficiency was no
different from controls in either patient group.

Connectivity-based analysis
We used the NBS method to identify the disrupted connected
components in patients (Fig. 5). For the aMCI group, a single
connected network with 33 nodes and 35 edges was altered (p �
0.002, corrected). The involved nodal regions mainly included
the bilateral frontal [PreCG, SFGdor, SFGmed, MFG, IFGtriang,
opercular part of inferior frontal gyrus (IFGoperc), and the sup-
plementary motor area (SMA)], temporal [superior temporal
gyrus (STG), MTG, and inferior temporal gyrus (ITG)] and para-
limbic [orbital part of superior frontal gyrus (ORBsup), orbital
part of middle frontal gyrus (ORBmid), medial orbital part of
superior frontal gyrus (ORBsupmed), insula (INS), ACG, me-
dian cingulate and paracingulate gyri (DCG), olfactory cortex
(OLF), gyrus rectus (REC), temporal pole of superior temporal
gyrus (TPOsup), and temporal pole of the middle temporal gyrus
(TPOmid)] regions (Fig. 5A). There were also two occipital re-
gions [MOG and inferior occipital gyrus (IOG)], a parietal region
(ANG), and a subcortical structure [amygdala (AMYG)] (Fig.
5A). For the RGD group, a single connected network consisting
of 18 nodes and 19 edges in the right hemisphere was altered (p �
0.015, corrected). The nodes were primarily composed of several
temporal (STG, MTG, and ITG), occipital [SOG, MOG, IOG,
and fusiform gyrus (FFG)], paralimbic [ORBsup, INS, parahip-
pocampal gyrus (PHG), TPOsup, and TPOmid] and subcortical
[hippocampus (HIP), caudate nucleus (CAU), putamen (PUT),
pallidium (PAL), and thalamus (THA)] regions (Fig. 5B). Impor-
tantly, all of the connections exhibited decreased values in the
patients compared with the controls. No significant differences
were found with respect to connected components between
aMCI and RGD patients.

High-resolution structural brain networks
In addition to the L-AAL network analysis, an H-1024 network
analysis was also performed. First, both the patients and control

subjects showed a small-world topology of the high-resolution
WM networks (Table 3). Among the three groups, significant
group effects in network strength, global and local efficiencies,
and the absolute shortest path length were observed. Post hoc
comparisons showed significantly reduced strength, decreased
global and local efficiencies, and increased absolute path length in
both the RGD and aMCI patients compared with the controls.
However, there were no differences (all p � 0.5) found between
the RGD and aMCI patients in these parameters. These results
were comparable with those of the L-AAL network analyses. Sec-
ond, the hub distributions of each group are shown in Figure 6A.
We found that the hub distributions were also approximately
similar to those obtained from the L-AAL network analyses,
which were mainly distributed in the association cortices. Third,
we identified the nodes with reduced efficiency in the patients
(p � 0.005, uncorrected) (Fig. 6B), which were mainly distrib-
uted in the frontal brain regions. We determined that most of the
nodes (36 of 42) exhibited a reduced efficiency in both the aMCI
and RGD patients relative to the controls. Between the aMCI and
RGD groups, three nodes in the prefrontal cortex showed a re-
duced efficiency (p � 0.05, uncorrected) in the RGD patients
compared with the aMCI patients. In addition, one node in the
left inferior frontal gyrus showed a reduced efficiency (p � 0.01,
uncorrected) in the aMCI patients than in the RGD patients.

Discussion
Using DTI and graph theory methods, we showed the topological
alterations of WM networks in RGD and aMCI. The three main
findings are as follows: (1) the organization of the WM network
in these patients was significantly disrupted, as indicated by re-
duced network strength and global efficiency; (2) decreased re-
gional and connectivity characteristics of primarily frontal
structures were deficits common between the two patient groups;
and (3) different regional/connectivity characteristics of the
PCG and several prefrontal regions were observed between the
RGD and aMCI groups. These findings extend our understand-

Figure 4. The distribution of brain regions with significant group effects in the nodal efficiency among the three groups at p � 0.05 (uncorrected). The node sizes indicate the significance of
between-group differences in the regional efficiency. For each node, the bar and error bar represent the mean value and SD, respectively, of the nodal efficiency in each group. Post hoc tests showed
that most of these regions (10 of 11) have a reduced efficiency in the aMCI patients versus the controls. Six of these regions, including the left SFGmed, bilateral SFGdor, left MFG, left ACG, and left
PreCG showed a reduced efficiency in the RGD patients compared with the controls. Only one region (right PCG) showed significant group differences between the RGD and aMCI patients, with a
higher efficiency in RGD than in aMCI. A single asterisk (*) represents a significant group difference at p � 0.05; a double asterisk (**) represents a significant group difference at p � 0.01. The
network shown here was constructed by averaging the anatomical connection matrices of all healthy controls with a threshold of a sparsity of 10%. Note that the FN-weighted WM network for each
participant was constructed using the AAL template. The nodes and connections were mapped onto the cortical surfaces using in-house BrainNet viewer software (www.nitrc.org/projects/bnv/). HC,
Healthy controls. For the abbreviations of the nodes, see Table 1.
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ing of the neurophysiologic mechanisms involved in these two
diseases from a network perspective.

Disrupted global topological organization in the
WM networks
WM networks in the RGD, aMCI, and controls showed small-
world properties (i.e., high global and local efficiencies), which
were consistent with previous diffusion MRI-based WM network
studies performed in healthy adults (Hagmann et al., 2008;
Iturria-Medina et al., 2008; Gong et al., 2009a,b; Shu et al., 2009,
2011; Lo et al., 2010). However, several topological properties,
including network strength, global efficiency, and absolute path
length, were significantly altered in the RGD and aMCI groups
compared with controls. These findings were consistent with pre-
vious neuroimaging studies using graph analysis to study depres-
sion (Leistedt et al., 2009) and AD (Stam et al., 2007; He et al.,
2008; Supekar et al., 2008; Lo et al., 2010). Lower network
strength was related to the sparse connectivity of the brain net-
works, which suggests a reduced WM integrity in the RGD and
aMCI patients. The global efficiency reflects the information
transfer between remote regions and is mainly associated with
long-range connections. Decreases in global efficiencies reflect a
disrupted global integration of the WM networks in these pa-
tients, which could be due to disconnections between brain re-
gions. In addition, short path lengths ensure interregional
effective integrity or prompt transfer of information in brain
networks, which constitutes the basis of cognitive processes
(Sporns and Zwi, 2004). Thus, the disease-related increases in the
absolute path length may be attributable to the degeneration of
fiber bundles used for information transmission. Consistent with
previous studies associated with WM disconnections in the brain

of RGD (Yuan et al., 2010) and aMCI (Bai
et al., 2009a), this study is the first to re-
port topologically convergent and diver-
gent patterns of the whole-brain WM
networks between these patients.

Common deficits of regional/
connection characteristics in the
WM networks
The common deficits of regional altera-
tions in the RGD and aMCI networks
were associated with decreased nodal effi-
ciency, predominately located in the fron-
tal lobe. This finding was similar to that of
a recent WM network study of AD, show-
ing disconnections of the WM in these re-
gions (Lo et al., 2010). Moreover, the
abnormal frontal lobe has been reported
in previous WM integrity studies of RGD
(Alexopoulos et al., 2008; Yuan et al.,
2010) and aMCI patients (Bai et al., 2009a;
Zhuang et al., 2010; Sexton et al., 2011).
Interestingly, our previous fMRI studies
associated partly with the frontal regions
indicated increased functional connectiv-
ity in RGD (Yuan et al., 2008b; Zhang et
al., 2011) and aMCI patients (Bai et al.,
2009b). We assumed that the decreases
observed in the anatomical connectivity
were likely to be associated with the com-
pensation in functional connectivity. In-
terestingly, the altered patterns of the

frontal regions appear to be similar in these two groups of pa-
tients. These frontal regions are primary sites that are the earliest
affected by �-amyloid protein accumulation in the development
of AD (Jack et al., 2008). The RGD subjects were found to have
similar regional characteristics of frontal regions comparable
with aMCI, providing additional support to the theory that RGD
may be the prodromal manifestation of AD. Furthermore, the
common deficits of decreased connections were mainly distrib-
uted between the frontal, temporal paralimbic regions and insula.
Although there is a growing amount of evidence that supports the
hypothesis of AD as a disconnection syndrome (Delbeuck et al.,
2003; He et al., 2009), this study contributes toward the under-
standing of RGD and aMCI as a high risk for later developing AD.

Disease-related distinctions of regional/connectivity
characteristics in the WM networks
A novel finding in this study was the identification of an increased
tendency of nodal efficiency of the PCG in the L-AAL WM net-
works in the RGD compared with the aMCI patients. The PCG
was initially thought to be one of the neural bases that mediate
both emotional and memory functions (Goveas et al., 2011; Xie et
al., 2011). Moreover, Goveas et al. (2011) found that a greater
depressive symptom severity was associated with an increased
function of the PCG in these interactions. However, the depres-
sive symptoms were controlled with a HDRS score of �7 after
treatment in the present RGD subjects. A neuropathological
study (Rapp et al., 2006) previously demonstrated that AD pa-
tients with a lifetime history of depression, including the diagno-
sis of current and past depressive disorder, showed higher levels
of both plaque and tangles in the PCG than AD patients without
depression. Our present findings are not fully consistent with this

Figure 5. The connected networks showing decreased structural connections in the aMCI and RGD patients compared with the
controls. A, The regional pairs showing decreased connections in the aMCI patients. These connections formed a single connected
network with 33 nodes and 35 connections ( p � 0.002, corrected). B, The regional pairs showing decreased connections in the
RGD patients. These connections formed a single connected network with 18 nodes and 19 edges in right hemisphere ( p � 0.015,
corrected). Between the aMCI and RGD patients, no connected components with significant difference were found. Note that the
FN-weighted WM network for each participant was constructed using the AAL template. The nodes and connections were mapped
onto the cortical surfaces using in-house BrainNet viewer software (www.nitrc.org/projects/bnv/).
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report because a greater pathology in the
PCG in the aMCI than the RGD patients
would best explain the differences observed
between the two groups. However, we can-
not exclude the possibility that the antide-
pressant medication of the RGD patients
may be a reason for the high regional effi-
ciency. Importantly, there was no significant
disrupted nodal efficiency of the PCG in the
WM networks between the patients and the
controls, although previous DTI studies re-
lated to RGD (Yuan et al., 2010) and aMCI
(Bai et al., 2009a) found altered regional in-
tegrity in this structure. This implied that
the homeostasis (i.e., nodal efficiency of
PCG) of complex networks allowing for the
segregation and integration of information
processing seemed to be more solid com-
pared with regional changes. Another possi-
ble explanation of the increased nodal
efficiency in RGD was that there was indis-
putable evidence of the early functional and
structural impairments of PCG in aMCI
(Fennema-Notestine et al., 2009; Beason-
Held, 2011) and its assumed role in memory
processing in connection to hippocampus
(Kenny et al., 2011), whereas the predomi-
nance of cognitive impairments in aMCI is
associated with memory function (Petersen et
al., 1999). In addition, our high-resolution
structural brain networks showed sporadic
prefrontal regions that were associated with a
discrepant nodal efficiency in the WM net-
works in the RGD compared with aMCI pa-
tients. The prefrontal lobe system usually
plays a vital role in mood regulation and
cognitive function (Milak et al., 2005; Bae et
al., 2006), which is involved in the patho-
genesis of RGD and aMCI (Butters et al.,
2008). The finding further suggests that re-
gional characteristics of the prefrontal re-
gions may also be a valuable marker for
distinguishing RGD from aMCI. Therefore,
WM network analyses had sufficient
sensitivity to identify the distinctions
between aMCI and RGD patients. From
connectivity-based analysis, we found two
patient groups with distinct patterns of re-
duced connections (i.e., right-hemispheric
asymmetries in the disrupted connected
components in the RGD and bilateral defi-
cits in the aMCI subjects). These findings are consistent with evi-
dence that the right hemisphere is selectively involved in the
processing of negative emotions (e.g., characterizing symptoms in
depression) (Hecht, 2010) and that complicated circuits associated
with the bilateral brain could provide significant discriminant fea-
tures for the classification of patients with cognitive impairments
(e.g., MCI) (Wee et al., 2012).

Methodological issues
There are several issues that should be addressed. First, the track-
ing procedure of deterministic tractography always terminates
when it reaches regions with fiber crossings and low FA values

because of the “fiber crossing” problem. This may result in a loss
of existing fibers. Other studies have proposed the use of proba-
bilistic tractography to define network edges (Iturria-Medina et
al., 2008; Gong et al., 2009b), which could be helpful in address-
ing these issues. Second, we performed two parcellation methods
(L-AAL and H-1024) to construct the WM network. The network
analysis of the global properties showed comparable results. Nev-
ertheless, there were also some discrepancies in the regional al-
terations between the aMCI and RGD groups. Such discrepancies
may be driven by differences in the graph properties under the
different node scales (Fornito et al., 2010; Zalesky et al., 2010a) or
the subregions of some anatomical structures (e.g., PCG). There-

Figure 6. Hub distributions and regional differences of high-resolution networks (H-1024) in the HC, aMCI, and RGD groups.
A, Three-dimensional representations of the hub distributions in the control, aMCI, and RGD groups. The hub nodes are shown in
red with the node sizes representing their nodal efficiency values. The regions were mapped onto the cortical surface at a lateral
view. B, The distribution of the nodes exhibited significant group effects in the nodal efficiency among the three groups at p �
0.005 (uncorrected). The node sizes indicate the significance of between-group differences in the regional efficiency. Post hoc tests
showed that most of the nodes (36 of 42) exhibited a reduced efficiency in both of the aMCI and RGD patients relative to the
controls. Between the aMCI and RGD groups, three nodes in the prefrontal cortex (in green) have a reduced efficiency in the RGD
patients than the aMCI patients. One node in the left inferior frontal gyrus (in yellow) showed a reduced efficiency in the aMCI
patients compared with the RGD patients. The network shown here was constructed by averaging the anatomical connection
matrices of all of the healthy controls with a threshold of a sparsity of 1%. The nodes and connections were mapped onto the
cortical surfaces using in-house BrainNet viewer software (www.nitrc.org/projects/bnv/).
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fore, graph analyses with different spatial resolutions would be
necessary and important to provide a more comprehensive pic-
ture of the topological alterations of brain networks in the
patients. Third, the recruitment of the present aMCI subjects
was based only on clinical criteria. Some of the subjects may
not have displayed any underlying AD pathology and may
represent a “contamination” of the sample with non-AD cases.
This may be resolved by obtaining additional biomarker in-
formation to better characterize the study groups. This would
further support the current diagnosis of “aMCI due to AD,” as
was recently published in the revised diagnostic criteria for AD
(Dubois et al., 2010). Finally, the present three groups were
not matched for age, albeit the fact that the age effect was
removed in all of the network analyses. Therefore, these data
should be interpreted with caution.
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